A Generalized Krylov Subspace Method for ℓp-ℓq Minimization
نویسندگان
چکیده
This paper presents a new efficient approach for the solution of the lp-lq minimization problem based on the application of successive orthogonal projections onto generalized Krylov subspaces of increasing dimension. The subspaces are generated according to the iteratively reweighted least-squares strategy for the approximation of lp/lq-norms by weighted l2-norms. Computed image restoration examples illustrate that it suffices to carry out only a few iterations to achieve highquality restorations. The combination of a low iteration count and a modest storage requirement makes the proposed method attractive.
منابع مشابه
Majorization-minimization generalized Krylov subspace methods for lp-lq optimization applied to image restoration
A new majorization-minimization framework for lp-lq image restoration is presented. The solution is sought in a generalized Krylov subspace that is build up during the solution process. Proof of convergence to a stationary point of the minimized lp-lq functional is provided for both convex and nonconvex problems. Computed examples illustrate that high-quality restorations can be determined with...
متن کاملA generalized matrix Krylov subspace method for TV regularization
This paper presents an efficient algorithm to solve total variation (TV) regularizations of images contaminated by a both blur and noise. The unconstrained structure of the problem suggests that one can solve a constrained optimization problem by transforming the original unconstrained minimization problem to an equivalent constrained minimization one. An augmented Lagrangian method is develope...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملMinimization Properties and Short Recurrences for Krylov Subspace Methods
Abstract. It is well known that generalized conjugate gradient (cg) methods, fulfilling a minimization property in the whole spanned Krylov space, cannot be formulated with short recurrences for nonsymmetric system matrices. Here, Krylov subspace methods are proposed that do fulfill a minimization property and can be implemented as short recurrence method at the same time. These properties are ...
متن کاملGmres-type Methods for Inconsistent Systems
Throughout this paper the integer l is defined by (1.3). Saad and Schulz [6, Proposition 2] show that when A is nonsingular and m ≥ l, the solution xm of the minimization problem (1.2) solves the linear system (1.1). The GMRES method is often implemented by first computing an orthogonal basis {vj} min{m,l} j=1 of the Krylov subspace Km(A, r0) by Arnoldi’s method; see Saad [7] or Saad and Schult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015